216 research outputs found

    Uphill Motion of Active Brownian Particles in Piecewise Linear Potentials

    Full text link
    We consider Brownian particles with the ability to take up energy from the environment, to store it in an internal depot, and to convert internal energy into kinetic energy of motion. Provided a supercritical supply of energy, these particles are able to move in a ``high velocity'' or active mode, which allows them to move also against the gradient of an external potential. We investigate the critical energetic conditions of this self-driven motion for the case of a linear potential and a ratchet potential. In the latter case, we are able to find two different critical conversion rates for the internal energy, which describe the onset of a directed net current into the two different directions. The results of computer simulations are confirmed by analytical expressions for the critical parameters and the average velocity of the net current. Further, we investigate the influence of the asymmetry of the ratchet potential on the net current and estimate a critical value for the asymmetry in order to obtain a positive or negative net current.Comment: accepted for publication in European Journal of Physics B (1999), for related work see http://summa.physik.hu-berlin.de/~frank/active.htm

    Correction algorithm for finite sample statistics

    Full text link
    Assume in a sample of size M one finds M_i representatives of species i with i=1...N^*. The normalized frequency p^*_i=M_i/M, based on the finite sample, may deviate considerably from the true probabilities p_i. We propose a method to infer rank-ordered true probabilities r_i from measured frequencies M_i. We show that the rank-ordered probabilities provide important informations on the system, e.g., the true number of species, the Shannon- and the Renyi-entropies.Comment: 11 pages, 9 figure

    Brownian Particles far from Equilibrium

    Full text link
    We study a model of Brownian particles which are pumped with energy by means of a non-linear friction function, for which different types are discussed. A suitable expression for a non-linear, velocity-dependent friction function is derived by considering an internal energy depot of the Brownian particles. In this case, the friction function describes the pumping of energy in the range of small velocities, while in the range of large velocities the known limit of dissipative friction is reached. In order to investigate the influence of additional energy supply, we discuss the velocity distribution function for different cases. Analytical solutions of the corresponding Fokker-Planck equation in 2d are presented and compared with computer simulations. Different to the case of passive Brownian motion, we find several new features of the dynamics, such as the formation of limit cycles in the four-dimensional phase-space, a large mean squared displacement which increases quadratically with the energy supply, or non-equilibrium velocity distributions with crater-like form. Further, we point to some generalizations and possible applications of the model.Comment: 10 pages, 12 figure
    • …
    corecore